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Abstract

We obtain the reflection matrices for the scattering of elementary magnons from
certain open boundaries, corresponding to open strings ending on D7 and D5
branes in AdS5 ×S5. In each case we consider two possible orientations for the
vacuum state. We show that symmetry arguments are sufficient to determine
the reflection matrices up to at most two unknown functions. The D7 reflection
matrices obey the boundary Yang–Baxter equation. This is automatic for
one vacuum orientation, and requires a natural choice of ratio between two
unknowns for the other. In contrast, the D5 reflection matrices do not obey the
boundary Yang–Baxter equation. In both cases we show consistency with the
existent weak and strong coupling results.

1. Introduction

In [1], Hofman and Maldacena generalized the scattering theory of magnons in the planar limit
of the AdS/CFT correspondence [2–8] to include boundaries. The particular open boundary
conditions they considered were those that arise when open strings end on certain D3 branes,
known as giant gravitons. On the gauge theory side, the giant gravitons considered in [1]
correspond to local operators involving the determinant of a given scalar field. The dual gauge
theory description of these D3 branes and their open string excitations is thus entirely given in
terms of pure N = 4 super Yang–Mills. Subsequent work on the reflection of magnons in this
context includes [9–14]. Other interesting ways of introducing boundaries exist. In this paper,
we shall consider the open boundary conditions associated with open strings ending on certain
D5 and D7 branes [15, 16], giving rise to dual gauge theories with less supersymmetry and
with fundamental matter. We shall construct the all-loop reflection matrices for these cases,
which will shed light on previous results (discussed below) concerning integrability at weak
and strong couplings.

Let us begin by summarizing some details of the two (3+1)-dimensional gauge theories
we shall consider. Both are descendants of maximally supersymmetric Yang–Mills in which
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the usual N = 4 field multiplet, in the adjoint of the gauge group SU(N), is supplemented by
additional fields in the fundamental of SU(N). Both are believed to be holographically dual
to IIB string theory on AdS5 × S5 in the presence of certain additional probe branes [17, 18].
With these gravity duals in mind, we shall speak of the D7 and D5 gauge theories. In this
paper, we work solely in the strict planar limit N → ∞, in which these theories are conformal.

The D7 theory is N = 2 super-Yang–Mills with a single chiral hypermultiplet of
fundamental matter. Its gravity dual is IIB string theory on AdS5 × S5 with a single3 D7
brane which wraps the entire AdS5 and a maximal S3 of the S5.

In the D5 case the dual theory has a single D5 brane which wraps a maximal S2 of the
S5 and only an AdS4 of the AdS5. This AdS4 ⊂ AdS5 defines a (2+1)-dimensional defect
hypersurface of the (3+1)-dimensional conformal boundary, which we take to be given by
x3 = 0. Since in the AdS/CFT dictionary fundamental matter in the gauge theory corresponds
to open strings ending on the brane, in this theory the fundamental matter is constrained to
live on the defect. For a single probe brane, this fundamental matter consists of a single 3D
hypermultiplet [17].

In either case, the addition of fundamental matter provides a new way to form local
gauge-invariant operators. In addition to the usual closed chains of N = 4 fields, e.g.

tr Z · · · χ · · · φ · · · Z (1)

constructed by taking the trace over the SU(N) colour indices, there are also operators of the
form

q̄Z · · · χ · · · φ · · · Zq, (2)

where q, q̄ are fields in, respectively, the fundamental and anti-fundamental of SU(N). Of
course, in the D5 case such operators exist only on the defect. Following the original insight
of [19], in the planar limit N → ∞ such operators can be thought of as open spin chains, with
the dilatation operator playing the role of the Hamiltonian.

Just as in the case of the closed chains, [20] at first order in the ’t Hooft coupling λ the
Hamiltonian has only nearest-neighbour interactions. Indeed, away from the endpoints of the
chain the Hamiltonian is the same as in the unperturbed N = 4 case, because all corrections
from processes involving virtual fundamental fields are suppressed by factors of 1/N . It is
only near the ends of the chain that the perturbation of N = 4 has any effect at all. This will
be an important observation for us in what follows.

An important question is whether the boundary conditions are integrable or not. Working
up to first order in the ’t Hooft coupling λ it was shown in [21, 22] that both the D5 and D7
cases yield integrable boundary conditions, at least in the SO(6) sector (further work about
integrability in dCFT includes [23–25]). That is, the 1-loop spin-chain Hamiltonian is one
of a family of conserved quantities encoded in a transfer matrix, which in turn is built out
of a bulk Lax matrix L together with a boundary reflection matrix K, following the usual
techniques of integrable open spin chains [26]. (Further results concerning integrable open
spin chains in the AdS/CFT context can be found in [27].) On the other hand, in the opposite
regime λ → ∞, open strings ending on D7 branes were shown to be classically integrable
by explicit construction of the corresponding non-local conserved charges [28]. However, the
same technique failed for open strings ending on D5 branes [28].

At weak coupling beyond 1-loop, the complications familiar from the closed-chain
operators [29] will arise: in particular, the interactions become long-range and the length
of the chain will not remain constant. To make progress one is lead, following [30], to

3 More generally, one can take a stack of M � N D7 branes [18] but we shall focus for simplicity on the case with
only M = 1 flavour.
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consider operators consisting almost entirely of a single scalar field Z, which is regarded as the
vacuum state, with a few other fields—‘magnons’—scattered along the chain. More precisely,
one chooses a preferred R-charge J and considers states in which both J and the classical
dimension � are large, but with �−J held finite. The vacuum state Z has �−J = 1−1 = 0
and the elementary magnons are those fields with � − J = 1. In this way it is possible to
ignore the microscopic details of the spin chain and focus on the macroscopic scattering theory
[31, 32] of the magnons. Symmetry considerations alone turn out to be powerful enough to
determine the two-particle S-matrix up to a single overall factor [2].

As we noted above, deep in the ‘bulk’ of an open spin chain the theories we consider
are indistinguishable from pure N = 4, so these symmetry arguments still apply and the
bulk S-matrix is unmodified. What remains to be determined is the scattering behaviour of
magnons off the end of the chain. Note that the relative orientation between the preferred
R-charge of vacuum and the spherical factor of the world volume of the brane will affect the
symmetries preserved by the reflection. We shall discuss a couple of inequivalent possibilities
for both the D5 and the D7 cases. As we shall see, in certain cases the boundary itself can
have an excitation attached to it.

The full actions for the D7 and D5 gauge theories can be found in [22, 21]. For
our purpose—that of constructing reflection matrices and determining whether they are
integrable—it will suffice, just as in the case of strings ending on maximal giant gravitons [1],
to perform in each case a careful analysis of the symmetries preserved by the boundary and
the representation content of the theory with respect to these symmetries. We do this, and
make certain checks against 1-loop results, for the D7 case in section 3 below, before turning
to the D5 case in section 4. Some conclusions are given in section 5.

2. Symmetries

We begin by recalling the definition of the superalgebra psl(4|4) of superconformal
symmetries of N = 4 SYM, following conventions similar to those of [33]. The generators of
the even subalgebra include D,Lα

β, L̃α̇
β̇ ,Ra

b of, respectively, dilatations, the sl(2) × sl(2)

of Lorentz and the sl(4) = so(6) of R-symmetry. Here

α, β, . . . = +,−, α̇, β̇, . . . = +̇, −̇, a, b, . . . = 1, 2, 3, 4. (3)

The remaining generators are the translations Pα̇β , conformal transformations Kαβ̇ ,
supersymmetries

(
Qα

a, Q̃
α̇a
)

and superconformal transformations
(
Sa

α, S̃aα̇
)
. Their

dimensions are 1,−1, 1
2 ,− 1

2 and they transform canonically according to the indices they
carry: [

Lα
β, Jγ

] = δ
γ

β Jα − 1
2δα

βJγ ,
[
Lα

β, Jγ

] = −δα
γ Jβ + 1

2δα
βJγ ,

(4)[
L̃α̇

β̇ , Jγ̇
] = δ

γ̇

β̇
Jα̇ − 1

2δα̇
β̇
Jγ̇ ,

[
L̃α̇

β̇ , Jγ̇

] = −δα̇
γ̇ Jβ̇ + 1

2δα̇
β̇
Jγ̇ ,[

Ra
b, J

c] = δc
bJ

a − 1
4δa

bJ
c,

[
Ra

b, Jc
] = −δa

cJb + 1
4δa

bJc.

The remaining non-trivial commutation relations are[
Kαβ̇ ,Pγ̇ δ

] = δ
γ̇

β̇
Lδ

α + δδ
αL̃γ̇

β̇ + δ
γ̇

β̇
δδ
αD,[

Sa
α,Pβ̇γ

] = δγ
α Q̃β̇a,

[
Qγ

a,Kαβ̇

] = −δγ
α S̃aβ̇ ,[

S̃aα̇,Pβ̇γ
] = δ

β̇
α̇Qγ

a, [Q̃γ̇ a,Kαβ̇ ] = −δ
γ̇

β̇
Sa

α,{
S̃aα̇,Sb

β

} = δb
a Kβα̇,

{
Q̃α̇a,Qβ

b
} = δa

bP
α̇β ,{

Sa
α,Qβ

b
} = δa

bL
β

α + δβ
αRa

b + 1
2δa

bδ
β
αD,

3
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{S̃aα̇, Q̃β̇ b} = δb
a L̃

β̇
α̇ − δ

β̇
α̇Rb

a + 1
2δb

a δ
β̇
α̇D. (5)

In this language the fields appearing in the N = 4 action are the gauge connection Aαα̇ ,
the fermions 
α b, 
̃α̇

b and the scalars φ[ab].
At the boundary of the scattering theory we consider—that is, near the endpoints of an

operator of the form

q̄Z · · · ZχZ · · · ZφZ · · · Zq, (6)

psl(4|4) symmetry is broken into two ways: by the choice of Bethe vacuum state Z, and
explicitly by the extra terms involving fundamental matter added to the original N = 4 action.
Equivalently, on the gravity side psl(4|4) is broken by our choice of angular momentum
generator J ∈ so(6), and by the presence of the D brane.

3. D7 brane

3.1. Boundary symmetries

Consider a D7 brane whose world volume wraps AdS5 entirely and the maximal S3 ⊂ S5

defined, without loss of generality, by X5 = X6 = 0. The so(6) symmetry is broken
to so(4)1234 × so(2)56. In our conventions (given in appendix A) the generators of the
so(4) ∼= sl(2) × s̃l(2) are then Ra

b and R̃ȧ
ḃ, with

R1
2 = R1

2, R̃1̇
2̇ = −R4

3,

R2
1 = R2

1, R̃2̇
1̇ = −R3

4, (7)

R1
1 = −R2

2 = 1
2R1

1 − 1
2R2

2, R̃1̇
1̇ = −R̃2̇

2̇ = 1
2R4

4 − 1
2R3

3,

and the supersymmetries with indices a = 3, 4 become4

Qα
1̇ = −Qα

4, Qα
2̇ = Qα

3, Q̃α̇
1̇ = Q̃α̇3, Q̃α̇

2̇ = Q̃α̇4, (8)

S1̇
α = S4

α, S2̇
α = −S3

α, S̃1̇
α̇ = S̃3α̇, S̃2̇

α̇ = S̃4α̇ . (9)

The D7 brane preserves the half of the background supersymmetries that are right-handed
with respect to this so(4) [18],5 that is, those carrying dotted Latin indices ȧ, ḃ, . . .:

Qα
ȧ, Q̃α̇

ȧ , Sȧ
α, S̃ȧ

α̇ . (10)

Some of these symmetries will be further broken by the vacuum state. The resulting residual
symmetry will depend on how this vacuum is chosen. Next we consider two possibilities.

3.1.1. Bulk vacuum state Z. We take the preferred R-charge J ∈ so(6) to be

J56 = − 1
2R1

1 − 1
2R2

2 + 1
2R3

3 + 1
2R4

4, (11)

which rotates the directions transverse to the brane and preserves the full sl(2) × s̃l(2)

symmetry. The corresponding spin-chain vacuum is

Z = X5 + iX6 = φ34. (12)

4 In what follows, this naming of indices will ensure that both copies of psl(2|2) have the standard anti-commutation
relations: {

Sa
α, Qβ

b

}
= δa

bLβ
α + δβ

α Ra
b + 1

2 δa
b δβ

α (D− J56),{
S̃ȧ

α̇ , Q̃β̇
ḃ

}
= δȧ

ḃ
L̃β̇

α̇ + δ
β̇
α̇ R̃ȧ

ḃ + 1
2 δȧ

ḃ
δ
β̇
α̇ (D− J56).

5 This is easy to see if one regards both the stack of N D3’s and the D7 as probe branes in flat space.
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The 16 supersymmetries neutral under D − J56, and so preserving Z, are as usual

Qα
a, Q̃α̇

ȧ , Sa
α, S̃ȧ

α̇ (13)

but of these only (cf 10)

Q̃α̇
ȧ , S̃ȧ

α̇ (14)

are supersymmetries of the D7. Thus, of the psl(2|2) ⊗ p̃sl(2|2) � R
3 symmetry algebra of

the scattering theory in the bulk [2], the residual symmetry algebra at the boundary for this
choice of vacuum is

sl(2)L × sl(2)R × p̃sl(2|2)L̃,R̃,Q̃,S̃ � R
3. (15)

3.1.2. Bulk vacuum state X. It will also be useful work with the vacuum

X = X1 + iX2 = φ14. (16)

Then J is

J12 = 1
2R1

1 − 1
2R2

2 − 1
2R3

3 + 1
2R4

4 = R1
1 + R̃1̇

1̇ (17)

of the supersymmetries (10) of the D7 brane, those neutral under D − J12 and so preserving
X are

Qα
3, Q̃α̇4, S3

α, S̃4α̇ . (18)

The sl(2)L × sl(2)R is broken to the u(1) of

J34 = − 1
2R1

1 + 1
2R2

2 − 1
2R3

3 + 1
2R4

4 = −R1
1 + R̃1̇

1̇. (19)

The preserved symmetries at the boundary in this case thus form a copy of

sl(2|1) × s̃l(2|1) (20)

generated by

Lα
β, R = 1

2 (D − J12 − J34 + J56),

Qα = Qα
3, Sα = S3

α (21)

and

L̃α̇
β̇ , R̃ = 1

2 (D − J12 − J34 − J56),

Q̃α̇ = Q̃α̇4, S̃α̇ = S̃4α̇ . (22)

3.2. Boundary degrees of freedom

3.2.1. Boundary fields. The N = 2 fundamental hypermultiplet has as its field content a
doublet of complex scalars φȧ and two Weyl fermions ψα̇

+ , ψα
−. They transform as follows:

sl(2) × s̃l(2) J56 so(1, 3) D

φ
[
0, 1

2

]
0 [0, 0] 1

ψ+ [0, 0] + 1
2

[
0, 1

2

]
3
2

ψ− [0, 0] − 1
2

[
1
2 , 0

]
3
2 .

(23)

The fundamental matter fields listed in (23) are the basis of states of the rightmost site of
the underlying spin chain. For each choice of vacuum, they fall into representations of the
residual symmetry algebra labelled by the eigenvalues of D − J . Of particular importance
are the states with the lowest value of D − J , which correspond in the scattering theory to
possible orientations of the unexcited boundary.

5
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3.2.2. Bulk vacuum state Z. In this case there is a degeneracy of states having the lowest
possible value of D − J56, namely:

D − J56 = 1 : φȧ, ψα̇
+ . (24)

These states transform in a fundamental representation = (2|2) of p̃sl(2|2), which therefore,
from the point of view of the scattering theory, constitutes a degree of freedom carried by the
boundary. The remaining orientations ψα

− have D − J56 = 2. They will participate in (the
microscopic spin-chain description of) magnon scattering off the boundary, and possibly also
in multiplets of boundary bound states.

Similarly, at the left-most site of the spin chain the conjugates of the fields in (23) appear,
and the of states with D − J56 = 1 is spanned by φ̄ȧ and ψ̄−α̇ .

This case is similar to that of the Z = 0 giant gravitons in [1], in the sense that the chain
carries boundary degrees of freedom. However, the left part of residual symmetry (15) as
well as the nature of the boundary excitation is different. Consequently, the left factor of the
boundary scattering matrix will be different.

3.2.3. Bulk vacuum state X. Of the fields in the fundamental (23), there is a unique one,
φ1̇, for which D − J12 is smallest (with D − J12 = 1

2 ). Similarly φ̄2̇ is the lowest-lying anti-
fundamental field. So in this case there are no degrees of freedom attached to the boundaries,
and there is a unique unexcited configuration of the spin chain, namely

φ̄2̇XXX · · ·XXXφ1̇. (25)

As far as the scattering theory is concerned, this case is thus identical to that of the Y = 0
giant gravitons in [1], and the boundary reflection matrix will therefore be the same.

3.3. Reflection matrices

We can now determine the scattering matrix of a bulk magnon off the boundaries, for each of
the choices of vacuum above. The bulk magnon transforms in a ( , ) representation of the
bulk symmetry psl(2|2) × p̃sl(2|2) × R

3. Let us first collect the necessary facts about this
representation.

Recall from [2, 7] that the representation (2|2) = is labelled by the values of the
coefficients a, b, c, d determining the action of the supersymmetries on the states,

Qα
a|φb〉 = aδb

a |ψα〉, Qα
a|ψβ〉 = bεαβεab|φb〉, (26)

Sa
α|φb〉 = cεαβεab|ψβ〉, Sa

α|ψβ〉 = dδβ
α |φa〉, (27)

and that these in turn depend on the momentum p of the magnon according to

a = √
gη, b =

√
g

η
f

(
1 − x+

x−

)
, c =

√
g iη

f x+
, d =

√
g

iη
(x+ − x−), (28)

where |η|2 = i(x− − x+), to ensure unitarity, and x± are the standard spectral parameters

eip = x+

x− , x+ +
1

x+
− x− − 1

x− = i

g
. (29)

The second of these equations ensures that a, b, c, d obey the condition ad − bc = 1 for a
short representation. The phase f is the product

∏
k eipk over all magnons to the left of the

magnon in question.

6
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Equivalently, the representation is labelled by the values of the three central charges
C,P,K which occur in the brackets of the supersymmetries:{

Qα
a,Q

β
b

} = εαβεabP,
{
Sa

α,Sb
β

} = εαβεabK,
(30){

Qα
a,S

b
β

} = δb
aL

α
β + δα

βRb
a + δα

βδb
aC.

They obey the shortening condition

C2 − PK = 1
4 , (31)

and are given in terms of the momenta by

P = ab = gf (1 − eip), K = cd = g

f
(1 − e−ip), (32)

C = 1
2 (ad + bc) = 1

2

√
1 + 16g2 sin

(
p

2

)2
. (33)

3.3.1. Vacuum Z. As we found above, in this case the boundary transforms as

(1, ) (34)

with respect to the surviving symmetry

sl(2) × sl(2) × p̃sl(2|2) × R
3. (35)

The reflection matrix therefore factors as a tensor product

R ⊗ R̃ (36)

just as does the bulk S-matrix. Consider the untilded factor R first. In this factor the boundary
scattering problem involves an excitation in a fundamental of psl(2|2) � R

3 hitting the
singlet boundary state and being reflected back into the bulk:

R : ⊗ 1 → ⊗ 1. (37)

The demand that R commute with the surviving sl(2) × sl(2) symmetry forces it to act as
follows:

R
∣∣φa

p

〉 = M(p)
∣∣φa

−p

〉
(38)

R
∣∣ψα

p

〉 = N(p)
∣∣ψα

−p

〉
for some functions M(p),N(p) of the incoming momentum p. Here, of course, the absence
of the supersymmetries Qα

a and Sa
α means that the representation decomposes into the sum

of two irreducible components, → 2 ⊕ 2, and symmetry arguments alone cannot fix the
relative coefficient.

It is worth noting that the fact that the odd generators Qα
a and Sa

α of psl(2|2) are not
symmetries of the boundary is actually crucial. If they were then (30) would force the central
charges P and K to depend on p according to (32). But then consider the scattering of a magnon
off the right boundary. (The argument for the left boundary is similar.) The phase f in (32)
does not change, because it depends only on the other magnons, generically all far away to
the left. Conservation of P and K would then not allow p �→ −p but only p �→ p, leaving us
no sensible notion of reflection. Note that the total values of all three central charges C,P,K

are indeed conserved by reflections: they must be, because they occur in the brackets of (30)
of the preserved supersymmetries Q̃α

a, S̃
a
α . The point is simply that (32) is not valid for the

untilded factor. And nor is (33), which means that strictly speaking we have not yet shown
that the outgoing momentum has to be −p; but this follows from the symmetries in the tilded
factor R̃ to be discussed below.

7
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Given that symmetry alone does not completely determine R, the natural question is
whether there exist functions M(p),N(p) such that R(p) in (38) solves the boundary Yang–
Baxter equation (bYBE, and also known as the reflection equation)

S(p, q)R(p)S(q,−p)R(q) = R(q)S(p,−q)R(p)S(−q,−p) (39)

which is the criterion for integrability in this context. The bulk S-matrix acts in the following
manner:

S
∣∣φa

pφb
q

〉 = A(p, q)
∣∣φ{a

q φb}
p

〉
+ B(p, q)

∣∣φ [a
q φb]

p

〉
+ 1

2C(p, q)εabεαβ

∣∣ψα
q ψβ

p

〉
S
∣∣ψα

pψβ
q

〉 = D(p, q)
∣∣ψ {α

q ψβ}
p

〉
+ E(p, q)

∣∣ψ [α
q ψβ]

p

〉
+ 1

2F(p, q)εabε
αβ
∣∣φa

qφb
p

〉
(40)

S
∣∣φa

pψβ
q

〉 = G(p, q)
∣∣ψβ

q φa
p

〉
+ H(p, q)

∣∣φa
qψβ

p

〉
S
∣∣ψα

pφb
q

〉 = K(p, q)
∣∣ψα

q φb
p

〉
+ L(p, q)

∣∣φb
qψ

α
p

〉
,

where [7]

A(p1, p2) = S0(p1, p2)
x+

2 − x−
1

x−
2 − x+

1

B(p1, p2) = S0(p1, p2)
x+

2 − x−
1

x−
2 − x+

1

(
1 − 2

1 − 1/x−
2 x+

1

1 − 1/x+
2 x+

1

x−
2 − x−

1

x+
2 − x−

1

)
C(f, p1, p2) = 2

f
S0(p1, p2)

η1η2

x+
1 x+

2

x−
2 − x−

1

x−
2 − x+

1

1

1 − 1/x+
2 x+

1

D(p1, p2) = −S0(p1, p2)

E(p1, p2) = −S0(p1, p2)

(
1 − 2

1 − 1/x+
2 x−

1

1 − 1/x−
2 x−

1

x+
2 − x+

1

x−
2 − x+

1

)
F(f, p1, p2) = −2f S0(p1, p2)

(
x+

1 − x−
1

)(
x+

2 − x−
2

)
η1η2x

−
1 x−

2

x+
2 − x+

1

x−
2 − x+

1

1

1 − 1/x−
2 x−

1

G(p1, p2) = S0(p1, p2)
x+

2 − x+
1

x−
2 − x+

1

(41)

H(p1, p2) = S0(p1, p2)
η1

η2

x+
2 − x−

2

x−
2 − x+

1

K(p1, p2) = S0(p1, p2)
η2

η1

x+
1 − x−

1

x−
2 − x+

1

L(p1, p2) = S0(p1, p2)
x−

2 − x−
1

x−
2 − x+

1

.

Certain components of (39) are entirely diagonal and hold solely by virtue of the invariance
of the relevant functions in S under the parity transformation

(p1, p2) ↔ (−p2,−p1) ⇐⇒ x±
1 ↔ −x∓

2 . (42)

For example (39) is correct acting on
∣∣φ1

pφ1
q

〉
provided that A(p, q) = A(−q,−p), which

is indeed true (assuming the overall factor S0(p, q) is also parity-invariant). Then there are
certain matrix elements of (39) which contain non-diagonal contributions but which again
hold purely by parity invariance of the S-matrix. For example〈

φ1
−pψ+

−q

∣∣ (bYBE)
∣∣φ1

pψ+
q

〉
(43)

holds by virtue of

H(p, q) = K(−q,−p) and G(p, q) = L(−q,−p). (44)

8
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In the end it turns out that (39) encodes essentially only two independent constraints on
M(p),N(p). First, the matrix element〈

ψ+
−pφ1

−q

∣∣ (bYBE)
∣∣φ1

pψ+
q

〉
(45)

yields the equation

0 = N(p)N(q)G(−q,−p)H(p,−q) − N(p)M(q)G(q,−p)H(p, q)

+ M(p)N(q)G(p,−q)K(−q,−p) − M(p)M(q)G(p, q)K(q,−p). (46)

On substituting for G,H,K from (41) one finds that it is possible to separate variables and
solve this equation by setting

N(p)x−(p) + M(p)x+(p)

N(p) − M(p)
= xB, (47)

where for the moment xB can be any constant. Thus

M/N = xB − x−

xB + x+
. (48)

But there is a second constraint, which occurs in the matrix element〈
φ1

−pφ2
−q

∣∣ (bYBE)
∣∣ψ+

pψ−
q

〉
(49)

and which is solved only by using the mass-shell condition (29) and in addition imposing the
equation

xB +
1

xB

= i

g
. (50)

We have verified that, given this equation, all the remaining components of the boundary
Yang–Baxter equation are satisfied. We have therefore the most general form of reflection
matrix consistent with integrability:

R
∣∣φa

p

〉 = R0(p)

(
xB − x−

xB + x+

) ∣∣φa
−p

〉
R
∣∣ψα

p

〉 = R0(p)
∣∣ψα

−p

〉
(51)

for some function R0(p).
Since we used the bYBE in arriving at this result, we cannot strictly deduce that this is

the correct reflection matrix: integrability is merely a consistent assumption rather than an
outcome in this case. Nevertheless, the forms of the reflection matrix (51) and relation (50)
are very natural in light of what happens in the other factor R̃ of the full reflection matrix
(36). Here the boundary scattering problem involves the bulk excitation in a fundamental
of p̃sl(2|2) � R

3 reflecting off a boundary degree of freedom in another fundamental :

R̃ : ⊗ → ⊗ . (52)

Since we found that this process must respect the full p̃sl(2|2) � R
3 symmetry, the situation

in this factor is identical to that of the Z = 0 case in [1]. The reader is referred to that paper
for the full details. In particular, one expects that the boundary degree of freedom transforms
in the representation defined by the following coefficients:

aB = √
gηB, bB =

√
gfB

ηB

, cB =
√

g iηB

xBfB

, dB =
√

gxB

iηB

, (53)

where |ηB |2 = −ixB, fB is the boundary phase and the mass-shell condition ad − bc = 1
yields precisely the relation (50) that was needed for the bYBE to hold in the untilded factor.
The positive energy solution is

xB = i

2g
(1 +

√
1 + 4g2) (54)

9
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and implies that the energy of the unexcited boundary is

ε = ad + bc =
√

1 + 4g2. (55)

The anomalous dimension of an operator with no bulk excitations should therefore be

2(
√

1 + 4g2 − 1) = 4g2 + O(g4) = λ

4π2
+ O(λ2). (56)

The quantity λ
4π2 = g2

YMN

4π2 is precisely the 1-loop anomalous dimension of an operator of the
form φ̄ZZ · · · ZZφ, as can easily be read from the computations of [22]. (When the vacuum
is Z = X5 + iX6, the quantities R1 and RL of equation (8) in [22] vanish.)

The boundary scattering matrix for a right boundary in the tilded factor is

R̃
∣∣φa

pφb
B

〉 = AR(p, q)
∣∣φ{a

−pφ
b}
B

〉
+ BR(p, q)

∣∣φ [a
−pφ

b]
B

〉
+ 1

2CR(p, q)εabεαβ

∣∣ψα
−pψ

β

B

〉
R̃
∣∣ψα

pψ
β

B

〉 = DR(p, q)
∣∣ψ {α

−pψ
β}
B

〉
+ ER(p, q)

∣∣ψ [α
−p ψ

β]
B

〉
+ 1

2FR(p, q)εabε
αβ
∣∣φa

−pφb
B

〉
(57)

R̃
∣∣φa

pψ
β

B

〉 = GR(p, q)
∣∣ψβ

−pφa
B

〉
+ HR(p, q)

∣∣φa
−pψ

β

B

〉
R̃
∣∣ψα

pφb
B

〉 = KR(p, q)
∣∣ψα

−pφb
B

〉
+ LR(p, q)

∣∣φb
−pψα

B

〉
,

where

AR(p) = R̃0(p)
x−(x− − xB)

x+(x+ + xB)
,

BR(p) = R̃0(p)
x−(−2(x−)2 + x+x− + 2(x+)2) − xB(2(x−)2 + x+x− − 2(x+)2)

(x+)2(xB + x+)
,

CR(p) = −R̃0(p)
2ηBη(x+, x−)

f

(xB + x− − x+)(x− + x+)

x+(xB + x+)
,

DR(p) = R̃0(p),

ER(p) = R̃0(p)
x+(2(x−)2 + x+x− − 2(x+)2) + xB(−2(x−)2 + x+x− + 2(x+)2)

x−x+(xB + x+)
,

FR(p) = R̃0(p)
2f

ηBη(x+, x−)

((x−)2 − (x+)2)(x−x+ + xB(x+ − x−))

x−(x+)2(xB + x+)
, (58)

GR(p) = −R̃0(p)
η(x+, x−)

ηB

xB(x− + x+)

x+(xB + x+)
,

HR(p) = R̃0(p)
(x+)2 − xBx−

x+(xB + x+)
,

KR(p) = R̃0(p)
(x−)2 + xBx+

(x+)2 + xBx+
,

LR(p) = R̃0(p)
ηB

η(x+, x−)

(x− − x+)(x− + x+)

x+(xB + x+)
,

which satisfies the bYBE, and of course will coincide with the right-boundary reflection matrix
of case Z = 0 in [1].

3.3.2. Vacuum X. As we showed above, for the other choice of vacuum, X = X1 +iX2 = φ14

the symmetries and degrees of freedom are similar to those of the strings ending on Y = 0
giant gravitons in [1]. Let us briefly review the derivation of the boundary scattering matrix
and show that is consistent with the 1-loop results obtained in [22], according to which the
left reflection amplitudes for each of the scalar field impurities are

RY = eip, RȲ = e−ip, RZ = RZ̄ = −1. (59)

10
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To characterize the reflection of bulk magnons it is convenient to understand the preserved
sl(2|1) × s̃l(2|1) as a subalgebra of the bulk symmetry algebra corresponding to the vacuum
X. In terms of sl(2) × s̃l(2) ∼= so(4)3456 spinorial indices, the preserved supersymmetry
generators (18) are6

Qα
2, Q̃α̇

2̇, S2
α, S̃2̇

α̇ . (60)

Once again, the reflection matrix factors into the form

R ⊗ R̃. (61)

Commutation with the bosonic generators requires the reflection matrix to be diagonal. For a
left reflection, commutation with fermionic generators (60) fixes each of the factors in (61) to
be of the form

RL = R̃L =

⎛⎜⎜⎝
r1 0 0 0
0 r2 0 0
0 0 r 0
0 0 0 r

⎞⎟⎟⎠ = R0(p)

⎛⎜⎜⎝
−eip 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ . (62)

To compare with the 1-loop results (59), we need to write the scalar fields carrying
sl(2) × s̃l(2) ∼= so(4)3456 spinorial indices,

Y = φ1 × φ̃1̇, Ȳ = φ2 × φ̃2̇, Z = φ1 × φ̃2̇, Z̄ = φ2 × φ̃1̇. (63)

We observe that all the relative exact reflection amplitudes from (62) are consistent with the
1-loop results (59).

Again, the boundary scattering matrix (62) coincides with that of the case Y = 0 of [1]
and bYBE is therefore obeyed.

4. D5 brane

4.1. Boundary symmetries

Consider now a D5 brane whose world volume wraps an AdS4 ⊂ AdS5 and a maximal
S2 ⊂ S5. For this case, instead of fixing the orientation of the brane and considering different
choices for the R-charge of the vacuum state, we will fix the bulk vacuum state to be Z and
consider different orientations for the maximal S2. The original so(6)R-symmetry is broken
by the presence of the D5 brane down to so(3)H × so(3)V . We will consider the following
two inequivalent situations7:

(i) Maximal S2 specified by X4 = X5 = X6 = 0.
(ii) Maximal S2 specified by X1 = X2 = X3 = 0.

The bosonic symmetries preserved by these two brane configurations are identical. Of the
Lorentz generators, only M01,M02 and M12 will be preserved, which form a diagonal so(1, 2):

L+̌−̌ = L+− + L̃−̇
+̇,

L−̌
+̌ = L−

+ + L̃+̇−̇, (64)

L+̌
+̌ = L+

+ + L̃−̇−̇,

6 The generators Ra
b and R̃ȧ

ḃ of so(4)3456 can be taken

R1
2 = R2

3 R̃1̇
2̇ = −R4

1

R2
1 = R3

2 R̃2̇
1̇ = −R1

4

R1
1 = −R2

2 = 1
2 R2

2 − 1
2 R3

3 R̃1̇
1̇ = −R̃2̇

2̇ = 1
2 R4

4 − 1
2 R1

1.

7 Taking e.g. X1 = X2 = X6 = 0 is less interesting because, with the vacuum state Z, both so(3)H and so(3)V
would be broken.
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where the Lα̌
β̌ follow canonical commutation rules. Of the original so(6) generators only

J12, J13, J23, J45, J46 and J56 will be preserved. These can be written as two sets of canonical
sl(2) generators Ra

b and R̃ȧ
ḃ:

R1
2 = R1

2 − R4
3, R̃1̇

2̇ = R1
4 − R2

3,

R2
1 = R2

1 − R3
4, R̃2̇

1̇ = R4
1 − R3

2, (65)

R1
1 = 1

2

(
R1

1 − R2
2 − R3

3 + R4
4
)
, R̃1̇

1̇ = 1
2

(
R1

1 + R2
2 − R3

3 − R4
4
)
.

In case (i), the Ra
b and the R̃ȧ

ḃ give rise to so(3)H and so(3)V , respectively. These roles are
exchanged in the case (ii).

Both D brane configurations, (i) and (ii), preserve half the background supersymmetries.
The preserved combinations, which can be written as carrying indices of the preserved
so(1, 2), so(3)H and so(3)V , turn out to be (see appendix A)

Q±̌
11̇ = Q±

1 − κQ̃∓̇3, S11̇±̌ = S1± − 1
κ
S̃3∓̇,

Q±̌
12̇ = Q±

4 − κQ̃∓̇2, S12̇±̌ = S4± − 1
κ
S̃2∓̇,

Q±̌
21̇ = Q±

2 − κQ̃∓̇4, S21̇±̌ = S2± − 1
κ
S̃4∓̇,

Q±̌
22̇ = −Q±

3 + κQ̃∓̇1, S22̇±̌ = −S3± + 1
κ
S̃1∓̇,

(66)

where κ = i in case (i) and κ = 1 in case (ii).

4.1.1. Bulk vacuum state Z. The choice of vacuum state

Z = X5 + iX6 (67)

breaks the so(3)456 symmetry generated by R̃ȧ
ḃ, which is so(3)V in case (i) and so(3)H in

case (ii). Among the supersymmetries (66) of the D5 brane, Qα̌
a2̇ and Sa2̇

α̌ are charged under
D − J56 and do not preserve Z. This leaves

Lα̌
β̌ , Ra

b, Qα̌
a1̇, Sa1̇

α̌ (68)

as residual symmetries of both the boundary and the vacuum. Since{
Qα̌

a1̇, S
b1̇

β̌

} = δb
aL

α̌
β̌ + δα̌

β̌
Rb

a + δα̌

β̌
δb
a(D − J56), (69)

the boundary symmetries certainly include a diagonal sl(2|2)D subalgebra of the bulk
symmetry algebra psl(2|2) ⊗ p̃sl(2|2) � R

3, with

CD = D − J56. (70)

Interestingly, the presence or absence of additional non-vanishing central charges, PD and
KD , depends on the choice of brane orientation. One has

{
Qα̌

a1̇,Q
β̌

b1̇

} = εα̌β̌εab(P − κ2P̃ ),
{
Sa1̇

α̌, Sb1̇
β̌

} = εα̌β̌εab

(
K − 1

κ2
K̃

)
, (71)

and since untilded and tilded central charges are identified, P = P̃ ,K = K̃ , the additional
central charges are twice the bulk additional central charges in case (i), whereas they vanish
in case (ii). This will be important for the consistency of reflection processes in what follows.

12
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4.2. Boundary degrees of freedom

4.2.1. Boundary fields. The 3D hypermultiplet living on the defect has as its field content an
so(3)H -doublet of complex bosonic scalars and an so(3)V -doublet of 3D fermionic spinors:

so(3)H × so(3)V so(1, 2) D

φa
[

1
2 , 0

]
[0] 1

2
ψα̌ȧ

[
0, 1

2

] [
1
2

]
1.

(72)

Case (i): so(3)V broken. We now ask which of the fundamental matter fields, which will
occupy the right-most site of the underlying spin chain, have the lowest possible value of
D − J56. In this case φa are not charged under J56, while the ψα̌ȧ have charges ± 1

2 . So the
lowest-lying fields are

D − J56 = 1
2 : φ a, ψα̌1̇. (73)

These transform in a fundamental representation = (2|2) of psl(2|2)D . We need to
determine the parameters (a, b, c, d) specifying this representation. We expect that they
should correspond to radial line segments in the LLM disk picture [3, 34], and they should
certainly yield an expression for the energy that matches the known 1-loop results of [21]. To
achieve this we take8

a =
√

2gηB, b =
√

2gfB

ηB

, c =
√

2g iηB

xBfB

, d =
√

2gxB

iηB

, (74)

where fB is a phase giving the starting point of a radial line segment on the rim of the unit
disk (for a right boundary). The unitarity and shortening conditions give

|ηB |2 = −ixB, xB ≡ i(1 +
√

1 + 16g2)

4g
. (75)

The central charge associated with the energy of the boundary excitation is

CD = D − J56 = 1
2

√
1 + 16g2. (76)

Then in the weak coupling limit ε ≈ 1
2 + 4g2. We can consider a bosonic boundary excitation

in order to compare with the 1-loop anomalous dimension calculations of DeWolfe and Mann
[21]. The 1

2 represents the classical dimension of the boundary scalar field, while the 4g2

matches exactly half of the 1-loop anomalous dimension of an operator of the form φ̄Z · · · Zφ

(where our Z is made out of XV according to the conventions of [21]).

Case (ii): so(3)H broken. Now, fields φȧ have charges ± 1
2 under J56, while the ψα̌a are

uncharged . Thus, the lowest possible value of D − J56 is

D − J56 = 0 : φ1̇. (77)

Setting this field in the right-most site of the spin chain, the right boundary would carry no
degree of freedom, i.e. the right-most site is occupied by a singlet of psl(2|2)D .

4.3. Bulk degrees of freedom and reflection matrices

As we have seen, only a diagonal psl(2|2)D×R
3 of the bulk symmetry psl(2|2)×p̃sl(2|2)×R

3

is preserved by the boundaries. We distinguished two cases, depending on the relative

8 Note that this parameterization and the resulting definitions of xB and ηB differ from the D7 case of the previous
section.
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orientation of the vacuum and the D5 brane in the internal space. We must now determine
how bulk magnons are accommodated into representations of the preserved psl(2|2)D × R

3.
With respect to the bulk symmetry, bulk excitations transform in a product of a fundamental

(φa|ψα) of psl(2|2) � R
3 and a fundamental (φ̃ȧ|ψ̃ α̇) of p̃sl(2|2) � R

3. By acting with
the diagonal generators, one can see that (φa|ψα) also transforms in the fundamental of
psl(2|2)D × R

3, with labels (a, b, c, d) given by (28). Analogously, (φ̃ȧ|ψ̃ α̇) also transforms
in the fundamental of psl(2|2)D × R

3, when reorganized as (φ̃1̇, φ̃2̇|ψ̃ −̇, ψ̃ +̇) and with labels(−κa, κb, c
κ
,− d

κ

)
.

Therefore the bulk magnons transform in the following tensor product of fundamental
representations of the diagonal symmetry (following the notation of [7]):

〈0, 0;C,P,K〉 ⊗ 〈
0, 0;C,−κ2P,− 1

κ2 K
〉 = {

0, 0; 2C, (1 − κ2)P,

(
1 − 1

κ2

)
K

}
, (78)

Case (i): so(3)V broken. Taking κ = i we get for the diagonal central charges

CD = 2C, PD = 2P, KD = 2K, (79)

which satisfy the multiplet splitting condition [7, 35]

CD
2 − PDKD = 1, (80)

according to which

{0, 0; 2C, 2P, 2K} = 〈1, 0; 2C, 2P, 2K〉 ⊕ 〈1, 0; 2C, 2P, 2K〉 = ⊕ . (81)

As we saw above, the right boundary carries a spanned by the fields φ a and ψα̌1̇.
Therefore we shall be interested in the following two scattering processes:

R : ⊗ → ⊗ (82)

R : ⊗ → ⊗ . (83)

Similar processes were studied in [36], for the bulk scattering of elementary magnon
against bound states of magnons. In general, tensor products of short representations can have
more than one irreducible component. For example, for m, n > 1,

〈m, n; �C〉 ⊗ 〈0, 0; �C ′〉 = {m, n; �C + �C ′} ⊕ {m − 1, n − 1; �C + �C ′}. (84)

However, the tensor products in the scattering processes (82) and (83) still have a single
irreducible component

〈1, 0; �C〉 ⊗ 〈0, 0; �C ′〉 = {1, 0; �C + �C ′}, (85)

〈0, 1; �C〉 ⊗ 〈0, 0; �C ′〉 = {0, 1; �C + �C ′}. (86)

Thus, by demanding that R commute with the generators of the residual symmetry, we will
be able to fix each of the boundary scattering matrices (82) and (83) up to an overall factor.
Let us first focus on the reflection by a right boundary (82). To commute with the bosonic
generators, the R matrix has to be of the form

R
∣∣φbc

p , φa
B

〉 = A1(p)
∣∣φ{bc

−p, φ
a}

B

〉
+ A2(p)εdeε

a{b∣∣φc}e
−p, φd

B

〉
+ A11(p)εα̌β̌

∣∣φα̌β̌
−p, φ

{b
B

〉
εc}a

+ A13(p)εα̌β̌εa{b∣∣ψc}β̌
−p , ψα̌

B

〉
R
∣∣φα̌β̌

p , φa
B

〉 = A6(p)
∣∣φα̌β̌

−p, φa
B

〉
+ A15(p)

∣∣ψa[α̌
−p , ψ

β̌]
B

〉
+ A10(p)εbcε

α̌β̌
∣∣φca

−p, φb
B

〉
14
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Figure 1. Scattering by a right boundary with a fundamental degree of freedom.

R
∣∣ψbβ̌

p , φa
B

〉 = A3(p)
∣∣ψ {bβ̌

−p , φ
a}
B

〉
+ A4(p)

∣∣ψ [bβ̌
−p , φ

a]
B

〉
+ A16(p)εabεγ̌ δ̌

∣∣φγ̌ δ̌
−p, ψ

β̌

B

〉
+ A19(p)

∣∣φab
−p, ψ

β̌

B

〉
R
∣∣φab

p , ψα̌
B

〉 = A5(p)
∣∣φab

−p, ψα̌
B

〉
+ A18(p)

∣∣ψ {bα̌
−p , φ

a}
B

〉
R
∣∣φβ̌γ̌

p , ψα̌
B

〉 = A9(p)
∣∣φβ̌γ̌

−p, ψα̌
B

〉
+ A17(p)εabε

β̌γ̌
∣∣ψbα̌

−p, φa
B

〉
R
∣∣ψbβ̌

p , ψα̌
B

〉 = A7(p)
∣∣ψb{β̌

−p , ψ
α̌}
B

〉
+ A8(p)

∣∣ψb[β̌
−p , ψ

α̌]
B

〉
+ A12(p)εα̌β̌εcd

∣∣φbd
−p, φc

B

〉
+ A14(p)εα̌β̌εγ̌ δ̌

∣∣φγ̌ δ̌
−p, φb

B

〉
. (87)

The vanishing of the commutator with the fermionic generators fixes 18 of these arbitrary
functions, leaving unknown only an overall factor. We list the results explicitly in appendix
A. To compute these commutators, one must know the quantum labels of excitations before
and after the reflection. Let us call f the starting point of the bulk magnon in the cumulative
picture. So, the representation labels are

a = √
gη, b =

√
g

η
f

(
1 − x+

x−

)
, c =

√
g iη

f x+
, d =

√
g

iη
(x+ − x−). (88)

Then, the starting point of the boundary excitation is fB = f eip = f x+

x− . So, its labels are

aB =
√

2gηB, bB =
√

2gf

ηB

x+

x− , cB =
√

2g iηB

xBf

x−

x+
, dB =

√
2gxB

iηB

. (89)

After the scattering, the bulk excitation has reversed its momentum, so the line representing
it in the cumulative picture has also to be reversed. When doing so, the net central charges
have to be conserved. Then, the cumulative picture has to change as shown in figure 1, which
means that the representation labels change in the following way:

a′ = a, b′ = −x−

x+
b, c′ = − x+

x− c, d ′ = d. (90)

a′
B = aB, b′

B =
(

x−

x+

)2

bB, c′
B =

(
x+

x−

)2

cB, d ′
B = dB. (91)

Analogously, for the R matrix of (83) we obtain

R
∣∣φβ̌γ̌

p , ψα̌
B

〉 = B1(p)
∣∣φ{β̌γ̌

−p , ψ
α̌}

B

〉
+ B2(p)εδ̌εε

α̌{β̌ ∣∣φγ̌ }ε
−p , ψδ̌

B

〉
+ B11(p)εab

∣∣φab
−p, ψ

{γ̌
B

〉
εβ̌}α̌

+ B13(p)εabε
α̌{β̌ ∣∣ψbγ̌ }

−p , φa
B

〉
R
∣∣φab

p , ψα̌
B

〉 = B6(p)
∣∣φab

−p, ψα̌
B

〉
+ B15(p)

∣∣ψ [aα̌
−p , φ

b]
B

〉
+ B10(p)εβ̌γ̌ εab

∣∣φγ̌ α̌
−p, ψ

β̌

B

〉
15
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R
∣∣ψbβ̌

p , ψα̌
B

〉 = B3(p)
∣∣ψb{β̌

−p , ψ
α̌}

B

〉
+ B4(p)

∣∣ψb[β̌
−p , ψ

α̌]
B

〉
+ B16(p)εα̌β̌εcd

∣∣φcd
−p, φb

B

〉
+ B19(p)

∣∣φα̌β̌
−p, φb

B

〉
R
∣∣φα̌β̌

p , φa
B

〉 = B5(p)
∣∣φα̌β̌

−p, φa
B

〉
+ B18(p)

∣∣ψa{β̌
−p , ψ

α̌}
B

〉
R
∣∣φbc

p , φa
B

〉 = B9(p)
∣∣φbc

−p, φa
B

〉
+ B17(p)εα̌β̌εbc

∣∣ψaβ̌
−p, ψα̌

B

〉
R
∣∣ψbβ̌

p , φa
B

〉 = B7(p)
∣∣ψ {bβ̌

−p , φ
a}
B

〉
+ B8(p)

∣∣ψ [bβ̌
−p , φ

a]
B

〉
+ B12(p)εabεγ̌ δ̌

∣∣φβ̌δ̌
−p, ψ

γ̌

B

〉
+ B14(p)εabεcd

∣∣φcd
−p, ψ

β̌

B

〉
(92)

for coefficient functions Bi(p) given in appendix C.
Symmetry arguments thus determine the form of the reflection matrix for a single bulk

magnon off the right boundary up to two unknown functions, which specify the overall factors
for (82) and (83). The important question is then whether there exists any choice of these
functions, or more precisely their ratio, such that the system is integrable, i.e. such that the
complete reflection matrix obeys the boundary Yang–Baxter equation.

We have found that in fact there is no choice of relative factor between the processes (82)
and (83) such that all components of the bYBE are satisfied. This failure is related to the fact
that the bulk S-matrix (41) does not respect the decomposition of the bulk magnons

⊗ → ⊕ (93)

into their graded-symmetric and graded-antisymmetric parts: the ‘C’ and ‘F’ channels mix
these in non-trivial ways. As we note below, this puts into context the known results about
integrability at 1-loop [21] and the failure to prove integrability for classical open strings on
D5 branes [28].

Case (ii): so(3)H broken. We consider now the case κ = 1 in (71). The diagonal central
charges for the bulk excitations are then

CD =
√

1 + 16g2 sin

(
p

2

)2

, PD = 0, KD = 0, (94)

which, for generic p, do not obey any shortening condition. Then, the 16 bulk magnons
transform in the smallest long representation {0, 0; �CD} of psl(2|2)D × R

3. At the right
boundary is the field φ1̇, which is a singlet of the preserved psl(2|2)D × R

3. Since neither
the boundary nor the bulk excitation carries the additional central charges PD and KD , the
conservation of these charges imposes no constraints on the reflection matrix.

To obtain the values of CD,PD,KD above, bulk excitations transform as a tensor product
of two fundamental excitations of psl(2|2)D × R

3, with labels (a, b, c, d) and (−a, b, c,−d)

respectively. The reflection matrix is therefore a map

R : ⊗ ⊗ 1 → ⊗ ⊗ 1 (95)

and is fixed by the bosonic symmetries to be of the form

R
∣∣φa

p × φ̃b
p

〉 = AR(p)
∣∣φ{a

−p × φ̃
b}
−p

〉
+ BR(p)

∣∣φ [a
−p × φ̃

b]
−p

〉
+ 1

2CR(p)εabεα̌β̌

∣∣ψα̌
−p × ψ̃

β̌
−p

〉
R
∣∣ψα̌

p × ψ̃ β̌
p

〉 = DR(p)
∣∣ψ {α̌

−p × ψ̃
β̌}
−p

〉
+ ER(p)

∣∣ψ [α̌
−p × ψ̃

β̌]
−p

〉
+ 1

2FR(p)εabε
α̌β̌
∣∣φa

−p × φ̃b
−p

〉
R
∣∣φa

p × ψ̃ β̌
p

〉 = GR(p)
∣∣ψβ̌

−p × φ̃a
−p

〉
+ HR(p)

∣∣φa
−p × ψ̃

β̌
−p

〉
R
∣∣ψα̌

p × φ̃b
p

〉 = KR(p)
∣∣ψα̌

−p × φ̃b
−p

〉
+ LR(p)

∣∣φb
−p × ψ̃ α̌

−p

〉
. (96)
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After the scattering the quantum labels change to (a′, b′, c′, d ′) and (−a′, b′, c′,−d ′) where

a′ = a, b′ = −x−

x+
b, c′ = − x+

x− c, d ′ = d. (97)

The commutation of R with the fermionic generators requires

AR(p) = −R0(p)
x−

x+
,

BR(p) = R0(p)
x−(x− + (x+)3)

(x+)2(1 + x−x+)
,

CR(p) = −R0(p)
η2(x− + x+)

f x+(1 + x−x+)
,

DR(p) = R0(p),

ER(p) = −R0(p)
x+ + (x−)3

x−(1 + x−x+)
,

FR(p) = R0(p)
f (x− + x+)(x− − x+)2

η2x+(1 + x−x+)
,

GR(p) = R0(p)
x− + x+

2x+
,

HR(p) = R0(p)
x+ − x−

2x+
,

KR(p) = R0(p)
x+ − x−

2x+
,

LR(p) = R0(p)
x− + x+

2x+
. (98)

We would like to compare these reflection amplitudes with those computed at 1-loop for scalar
fields in [21]. Of course, since the all-loop expressions are known up to an overall factor, we
should compare relative amplitudes between different scalar fields. According to the 1-loop
calculation, when the scalar fields �I with I = 1, 2, 3 and �4 are reflected by a right boundary,
they pick up the following factors [21]:

R|�I(p)〉 = −e−ip|�I(−p)〉
(99)

R|�4(p)〉 = |�4(−p)〉.
In our notation, the scalars �I correspond to φ{a × φ̃b} while �4 corresponds to φ[a × φ̃b] and
their all-loop reflection amplitudes are given by AR(p) and BR(p), respectively. Expanding
in powers of g, one sees that indeed

AR(p)

BR(p)
= −x+ + x−(x+)2

x− + (x+)3
= −e−ip + O(g3), (100)

where we have used that

x± = e±i
p

2

1 +
√

1 + 16g2 sin2
(

p

2

)
4g sin

(
p

2

) , λ = 16π2g2. (101)

Now, as with case (i) above, the reflection amplitudes (98) turn out not to satisfy the
boundary Yang–Baxter equation. A direct computation shows that many matrix elements of
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the bYBE are non-vanishing. For instance,

〈(φ1 × φ̃2)−p1 , (φ
1 × φ̃1)−p2 | (bYBE)|(φ1 × φ̃2)p1 , (φ

1 × φ̃1)p2〉

= x−
2

(
x+

1 − x−
1

)2(
x+

1 + x−
1

)(
x+

2 − x−
2

)(
x+

2 + x−
2

)(
x+

1 − x−
2

)(
x−

1 − x−
2

)(
x−

1 + x+
2

)
4x+

1

(
x+

2

)2(
x−

1 − x+
2

)2(
x+

1 + x+
2

)2(
1 + x+

1 x−
1

)(
1 − x+

1 x+
2

) .

(102)

The 1-loop analysis carried out in [21] shows that in the scalar sector of theory, the fields living
in the defect yield integrable open boundary conditions for the 1-loop dilatation operator.
Therefore, consistency with this result requires that any non-vanishing matrix element of the
bYBE for scalar bulk excitations should vanish in the weak coupling limit. We have verified
that this is indeed the case. For example, the weak coupling expansion of (102) gives

〈(φ1 × φ̃2)−p1 , (φ
1 × φ̃1)−p2 | (bYBE)|(φ1 × φ̃2)p1 , (φ

1 × φ̃1)p2〉

= − 256g2 e− i
2 (3p1+p2)(1−2eip1 +ei(p1+p2)) cos(

p1
2 ) sin4(

p1
2 ) cos(

p2
2 ) sin2(

p2
2 ) sin(

p1+p2
2 ) sin

(
p1−p2

2

)
(1+e2ip2 (5−4 cos(p1))+2eip2 (cos(p1)−2))

2 + O(g3),

(103)

From this analysis it is clear that the 1-loop integrability in the D5 brane system is ‘an accident’
(and one which will not be exclusive to the scalar sector, since all the components of bYBE
are order g2). The breakdown of integrability beyond 1-loop is consistent with the lack of
integrability in the classical boundary conditions on the string side [28].

5. Conclusions

Let us summarize our results concerning the reflection matrices for the scattering of elementary
magnons from boundaries in the open spin chains associated with the D7 and D5 gauge theories.
In each case we found that symmetry arguments alone are sufficient to determine the reflection
matrices up to at most two unknown functions.

For the D7 theory, the reflection matrix is (depending on the choice of vacuum, X or Z)
either integrable automatically, with only one overall factor undetermined, or integrable given
a certain apparently natural choice of the ratio between the two unknowns. The remaining
overall factor can naturally be constrained by demanding crossing symmetry, in a way entirely
analogous to [9, 10]. The survival of integrability seems to be closely linked to the fact that the
boundary respects the factorization psl(2|2) × p̃sl(2|2) of bulk scattering processes (which
was also true in the giant graviton case [1]).

In contrast, in the D5 theory we have shown that boundary scattering is certainly not
integrable. There exists no reflection matrix satisfying the boundary Yang–Baxter equation
consistent with the symmetries of the problem. This breakdown of integrability is not visible at
leading order at weak coupling, essentially because it is linked to the bulk scattering processes
associated with length-changing interactions of the spin chain.

It would be interesting to investigate all-loop reflection matrices for other situations
in which open spin chains have arisen in an AdS/CFT context. One notable example is
that of supersymmetric Wilson loops with operator insertions. In [37] the study of 1-loop
anomalous dimension of certain scalar insertions is reduced to an open spin chain with
integrable boundary conditions. The Wilson loops preserve a copy of osp(2, 2|4) [38] which
is the same superalgebra (though differently embedded in psl(4|4)) preserved by the D5
branes we consider. The two situations can therefore be expected to show some similarities,
but further work is needed to determine whether or not the boundary Yang–Baxter can be
satisfied in the Wilson loop case.
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Appendix A. Conventions

The vector representation 6 of so(6) is equivalent to the antisymmetric second-rank tensor
representation of sl(4)∼= so(6); to translate between them we make a standard choice

X = �1 + i�2 = φ14, X̄ = �1 − i�2 = φ23,

Y = �3 + i�4 = φ24, Ȳ = �3 − i�4 = φ31, (A.1)

Z = �5 + i�6 = φ34, Z̄ = �5 − i�6 = φ12.

This corresponds to the following set of so(6) gamma matrices:

�1 = −σ2 ⊗ σ2 ⊗ σ3, �2 = σ2 ⊗ σ1 ⊗ 1,

�3 = −σ2 ⊗ σ2 ⊗ σ1, �4 = σ2 ⊗ σ2 ⊗ σ2,

�5 = σ1 ⊗ 1 ⊗ 1, �6 = −σ2 ⊗ σ3 ⊗ 1,

(A.2)

for then

�7 = i�1 · · ·�6 = σ3 ⊗ 1 ⊗ 1, C = σ2 ⊗ 1 ⊗ σ2 (A.3)

and one may verify that when 6 → 4 ⊗ 4 according to �i �→ 1
2 (1+�7)�iC, the identifications

above are obtained.
For the so(1, 3) gamma matrices we use:

γ 0 = −iσ1 ⊗ 1, γ i = σ2 ⊗ σi. (A.4)

Alternatively the same basis can be written as

γ μ =
(

0 −iσμ

iσ̄ μ 0

)
with

σμ = (1, �σ)

σ̄ μ = (−1, �σ)
(A.5)

γ5 = iγ0γ1γ2γ2 = σ3 ⊗ 1 =
(

δα
β 0

0 −δ
β̇
α̇

)
, C = −iσ3 ⊗ σ2 =

(
εαβ 0

0 εα̇β̇

)
. (A.6)

For the so(1, 9) gamma matrices one can use:

�μ = γ μ ⊗ 1, for μ = 0, . . . , 3, (A.7)

�I = γ5 ⊗ �I−3, for I = 4, . . . , 9. (A.8)

Appendix B. D5 brane supersymmetries

The supersymmetries preserved by the D5 branes considered in section 4 can be worked out by
looking for the Killing spinors of the supersymmetric background consistent with the kappa
symmetry projection [39]. From the field theory point of view, the original supersymmetry
transformations need to be restricted to those preserving the position of the defect. Ignoring
the R-charge indices of the supersymmetry generators, supertranslations ε · Q preserving the
position x3 = 0 of a defect would be those satisfying ε = εγ 1γ 2γ 3. However, the original
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CFT is N = 4 and the generators carry su(4) indices. The R-charge indices on the preserved
combinations will depend on the specific S2 that the D5 brane wraps. These combinations
can be elucidated repeating the analysis of [39], for the two D5 branes configurations we
are interested in. For the supersymmetries at least, one can also consider the D3–D5 brane
intersections in d = 10 Minkowski space. In order to satisfy the kappa symmetry projection,
the Killing spinors have to be projected as

P+ε = ε with P+ =
{

1
2 (1 + �3456) for case (i),

1
2 (1 + �3789) for case (ii),

(B.1)

where �A are the SO(1, 9) Dirac matrices. Using conventions (A.7), (A.8) for them, this
projector is reduced to

P+ = 1
2 (1 + γ 0γ 1γ 2 ⊗ i�1�2�3) = 1

2 (1 + σ1 ⊗ σ3 ⊗ σ2 ⊗ σ1 ⊗ σ2). (B.2)

in case (i) and to

P+ = 1
2 (1 + γ 0γ 1γ 2 ⊗ i�4�5�6) = 1

2 (1 − σ1 ⊗ σ3 ⊗ σ1 ⊗ σ1 ⊗ σ2). (B.3)

in case (ii).
Now, in order to match with the preserved supersymmetries in the dual field theory, it is

convenient to regard the supersymmetry generators of N = 4 SYM as the 32 components of
an object Q in

DiracSO(1,3) × DiracSO(6), (B.4)

for which we should allow only supertranslations ε · Q such that the Lorentz and SO(6)

chiralities match:

ε = ε(γ5 ⊗ �7). (B.5)

The relations between the original Qα
a and Q̃α̇a and the ε ·Q subject to (B.5) are the following.

For Lorentz indices

Q−a = Q+
a = (↑,↑, . . .) · Q, −iQ̃−̇a = iQ̃ a

+̇ = (↓,↑, . . .) · Q,

−Q+a = Q−
a = (↑,↓, . . .) · Q, iQ̃+̇a = iQ̃ a

−̇ = (↓,↓, . . .) · Q.
(B.6)

For su(4) indices

Qα
1 = (. . . ,↑,↑,↑) · Q, iQ̃α̇1 = −(. . . ,↓,↑,↓) · Q,

Qα
2 = (. . . ,↑,↑,↓) · Q, iQ̃α̇2 = (. . . ,↓,↑,↑) · Q, (B.7)

Qα
3 = (. . . ,↑,↓,↑) · Q, iQ̃α̇3 = −(. . . ,↓,↓,↓) · Q,

Qα
4 = (. . . ,↑,↓,↓) · Q, iQ̃α̇4 = (. . . ,↓,↓,↑) · Q.

We should treat the superconformal transformations S accordingly, i.e. as a 32 component
object provided we allow only transformations η · S such that

η = −η(γ5 ⊗ �7). (B.8)

Again, superconformal generators Sa
α and S̃aα̇ can be related to η · S. For that, the same

identifications with undotted, dotted, upstairs and downstairs indices as in (B.6) and (B.7)
hold. One can verify that with these identifications, the superbrackets taking the form

{Qir,Qjs} = 2Pμ(γ μC)ij C̄rs,

{Sir , Sjs} = −2Kμ(γ μC)ij C̄rs, (B.9)

{Qir, Sjs} = Cij (�
abC̄)rsJab + (γ μνC)ij C̄rsMμν + Cij C̄rsD,
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where Jab are the generators of so(6) and Mμν of so(1, 3), are translated to{
Qα

b, Q̃
α̇a} = 2Pμ(σμ)αα̇δa

b,{
S̃α̇a,S

b
α

} = 2Kμ(σ̄ μ)α̇αδb
a ,

(B.10){
Sa

α,Qβ
b
} = δa

bL
β

α + δβ
αRa

b + 1
2δa

bδ
β
αD,

{S̃aα̇, Q̃β̇ b} = δb
a L̃

β̇
α̇ − δ

β̇
α̇Rb

a + 1
2δb

a δ
β̇
α̇D.

Therefore, among the ε ·Q satisfying (B.5) and η ·S satisfying (B.8), the supersymmetries
of the dCFT are found also demanding ε = εP+ and η = ηP+. In case (i), where P+ is given
by (B.2), the preserved combinations are:

(↑, ��,↑,↑,↑) · Q ∓ (↓, ��,↓,↓,↓) · Q = Q±
1 − iQ̃∓̇3

(↑, ��,↑,↑,↓) · Q ± (↓, ��,↓,↓,↑) · Q = Q±
2 − iQ̃∓̇4

(↑, ��,↑,↓,↑) · Q ∓ (↓, ��,↓,↑,↓) · Q = Q±
3 − iQ̃∓̇1

(↑, ��,↑,↓,↓) · Q ± (↓, ��,↓,↑,↑) · Q = Q±
4 − iQ̃∓̇2 (B.11)

(↓, ��,↑,↑,↑) · S ∓ (↑, ��,↓,↓,↓) · S = iS̃1±̇ + S3
∓

(↓, ��,↑,↑,↓) · S ± (↑, ��,↓,↓,↑) · S = iS̃2±̇ + S4
∓

(↓, ��,↑,↓,↑) · S ∓ (↑, ��,↓,↑,↓) · S = iS̃3±̇ + S1
∓

(↓, ��,↑,↓,↓) · S ± (↑, ��,↓,↑,↑) · S = iS̃4±̇ + S2
∓.

Whereas in case (ii), with P+ given by (B.3), we obtain:

(↑, ��,↑,↑,↑) · Q ± i(↓, ��,↓,↓,↓) · Q = Q±
1 − Q̃∓̇3

(↑, ��,↑,↑,↓) · Q ∓ i(↓, ��,↓,↓,↑) · Q = Q±
2 − Q̃∓̇4

(↑, ��,↑,↓,↑) · Q ± i(↓, ��,↓,↑,↓) · Q = Q±
3 − Q̃∓̇1

(↑, ��,↑,↓,↓) · Q ∓ i(↓, ��,↓,↑,↑) · Q = Q±
4 − Q̃∓̇2

(↓, ��,↑,↑,↑) · S ± i(↑, ��,↓,↓,↓) · S = iS̃1±̇ − iS3
∓ (B.12)

(↓, ��,↑,↑,↓) · S ∓ i(↑, ��,↓,↓,↑) · S = iS̃2±̇ − iS4
∓

(↓, ��,↑,↓,↑) · S ± i(↑, ��,↓,↑,↓) · S = iS̃3±̇ − iS1
∓

(↓, ��,↑,↓,↓) · S ∓ i(↑, ��,↓,↑,↑) · S = iS̃4±̇ − iS2
∓.

These are the combinations presented in (67), with κ = i for case (i) and κ = 1 for case (ii).

Appendix C. Details of D5 brane reflection matrices

Invariance under the fermionic generators forces the functions appearing in (87) to be

A1(p) = R0(p)

A2(p) = R0(p)

(
1

3
+

((x+)2 − xBx−)(xB(x+)2 + x−)

(x+)2(xB − x−)(1 + xBx−)

)
A3(p) = −R0(p)

xBx+ + (x−)2

x−(xB − x−)

A4(p) = R0(p)
xB(x+)2 + (x−)2(xB(x+)2 − 2(xB + x+)) − x−x+(xB + x+(3xBx+ − 2))

2x−x+(xB − x−)(1 + xBx−)

A5(p) = R0(p)
xBx− − (x+)2

x−(xB − x−)
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A6(p) = R0(p)
x−x+

(
xB + x−(xBx− + 4)

)− xB(x−)4 − xB(x+)2(2(x−)2 − 1)

2(x−)2(xB − x−)(1 + xBx−)

A7(p) = −R0(p)
x+(xB + x+)

x−(xB − x−)

A8(p) = R0(p)
2x2

B(x−)3 + 2(x+)3 − x−x+(xB − x+)(1 − xBx−)

(x−)2(xB − x−)(1 + xBx−)

A9(p) = R0(p)
xBx−x+ + xB(x−)3x+ + 2(x+)2(xB + x+) − (x−)2(xB + x+(3xBx+ − 2))

2(x−)2(xB − x−)(1 + xBx−)

A10(p) = R0(p)
f xB((x+)2 − (x−)2)2

2x−x+(xB − x−)(1 + xBx−)η2

A11(p) = R0(p)
xB(x+ + x−)2η2

2f x−x+(xB − x−)(1 + xBx−)

A12(p) = R0(p)
f xB(xBx− − (x+)2)((x+)2 − (x−)2)√

2x−x+(xB − x−)(1 + xBx−)ηBη

A13(p) = R0(p)

√
2ηBηxB(xBx− − (x+)2)(x+ + x−)

f x−x+(xB − x−)(1 + xBx−)

A14(p) = R0(p)
ηxB(xB(x−)2 − x+)(x+ + x−)

2
√

2ηBx−x+(xB − x−)(1 + xBx−)

A15(p) = R0(p)

√
2ηB(xB(x−)2 − x+)((x+)2 − (x−)2)

η(x−)2(xB − x−)(1 + xBx−)

A16(p) = −R0(p)
ηBη(xB + x+)(x+ + x−)

2
√

2f x−(xB − x−)(1 + xBx−)

A17(p) = R0(p)
f xB(xB + x+)((x+)2 − (x−)2)√
2ηBηx−(xB − x−)(1 + xBx−)

A18(p) = R0(p)

√
2ηxB(x+ + x−)

ηBx−(xB − x−)

A19(p) = R0(p)
ηB((x+)2 − (x−)2)√

2ηx−(xB − x−)
. (C.1)

Similarly, for the reflection of the antisymmetric part of the bulk magnon, one finds the
following coefficients:

B1(p) = R̃0(p)

B2(p) = R̃0(p)

(
1

3
+

((x−)2 + xBx+)(xB(x−)2 − x+)

(x−)2(xB + x+)(1 − xBx+)

)
B3(p) = R̃0(p)

(x+)2 − xBx−

x+(xB + x+)

B4(p) = R̃0(p)
xB(x−)2 + (x+)2(xB(x−)2 − 2(xB − x−)) − x−x+(xB + x−(3xBx− + 2))

2x−x+(xB + x+)(1 − xBx+)

B5(p) = R̃0(p)
(x−)2 + xBx+

x+(xB + x+)

B6(p) = R̃0(p)
x−x+(xB + x+(xBx+ − 4)) − xB(x+)4 − xB(x−)2(2(x+)2 − 1)

2(x+)2(xB + x+)(1 − xBx+)
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B7(p) = −R̃0(p)
x−(xB − x−)

x+(xB + x+)

B8(p) = R̃0(p)
2(x−)3 + 2x2

B(x+)3 + x−x+(xB + x−)(1 + xBx−x+)

(x+)2(xB + x+)(1 − xBx+)

B9(p) = R̃0(p)
xBx−x+ + xB(x+)3x− + 2(x−)2(xB − x−) − (x+)2(xB + x−(3xBx− + 2))

2(x+)2(xB + x+)(1 − xBx+)

B10(p) = −R̃0(p)
xB(x+ + x−)2η2

2f x−x+(xB + x+)(1 − xBx+)

B11(p) = −R̃0(p)
f xB((x−)2 − (x+)2)2

2x−x+(xB + x+)(1 − xBx+)η2

B12(p) = R̃0(p)
ηBηxB(xBx+ + (x−)2)(x+ + x−)√

2f x−x+(xB + x+)(1 − xBx+)

B13(p) = R̃0(p)

√
2f xB(xBx+ + (x−)2)((x−)2 − (x+)2)

x−x+(xB + x+)(1 − xBx+)ηBη

B14(p) = R̃0(p)
ηB(xB(x+)2 + x−)((x−)2 − (x+)2)

2
√

2η(x+)2(xB + x+)(1 − xBx+)

B15(p) = −R̃0(p)

√
2ηxB(xB(x+)2 + x−)(x+ + x−)

ηBx−x+(xB + x+)(1 − xBx+)

B16(p) = R̃0(p)
f xB(xB − x−)((x+)2 − (x−)2)

2
√

2ηBηx+(xB + x+)(1 − xBx+)

B17(p) = −R̃0(p)
ηBη(xB − x−)(x+ + x−)√
2f x+(xB + x+)(1 − xBx+)

B18(p) = R̃0(p)

√
2ηB((x+)2 − (x−)2)

ηx+(xB + x+)

B19(p) = R̃0(p)
ηxB(x+ + x−)√
2ηBx+(xB + x+)

. (C.2)
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